2-way flow control valves series GFG2 are used to provide pressure compensated flow. The valve design compensates temperature variations to a certain extent.

The GFG is optionally equipped with a built-in check valve for the return flow.

Design

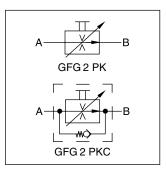
The 2-way flow control valves are used with a triangular flow restrictor and a subsequent pressure compensator. The setting of the flow rate can be locked by a cylinder lock in the adjusting knob against unauthorized adjustment (option S).

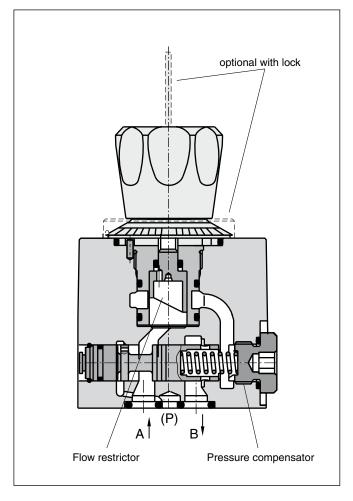
Function

The fluid enters through port A through the flow restrictor. Downstream of the flow restrictor the pressure compensator is located. The control edges are provided by four radial bores in the poppet, which are fully open to port B in the neutral position.

Optionally the flow from A to B can be blocked by external pilot pressure applied to port P (option X). This can be used to avoid unintended initial movements of actuators.

The flow adjustment is done via the hand knob with an adjusting angle knob of 270°.


Features


- · Flow rate independent of pressure and temperature
- Available for 7 different flow rates
- · Good fine adjustment
- · External port (P) to block flow from A to B
- · Optional reverse flow check valve
- Turn knob with cylinder lock (option S)

Note

Rectifier plate and subplates see 'Accessories' at the end of this chapter.

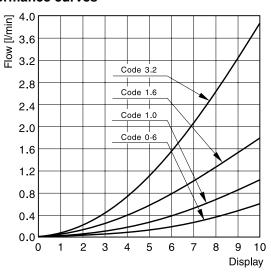
Ordering Code / Technical Data

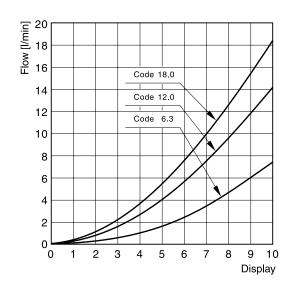
Ordering code GFG 2 10 Locking Flow **Pilot** 2-way flow Check Seal Nominal **Pressure** Design control valve Size option port compensated valve series **NG06** (not required for ordering) Code Check valve Control of the pres-Code sure compensator Without omit Standard internal check valve X 1) With External С check valve Code Seal Code Locking option omit NBR Standard ٧ FPM omit without lock With s cylinder lock

Code	Flow [l/min]		
0.6	0.015 to 0.6		
1.0	0.015 to 1.0		
1.6	0.015 to 1.6		
3.2	0.025 to 3.2		
6.3	0.025 to 6.3		
12.0	0.080 to 12.0		
18.0	0.080 to 18.0		

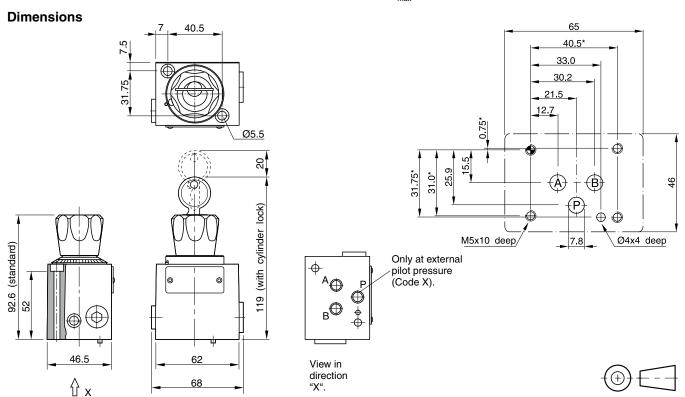
Bold letters =Short-term availability

Technical data


Design			Orifice, infinitely variable, pressure-compensated		
Actuator			Manual flow rate adjustment		
Mounting typ	e		ISO 6263 code: ISO 6263-AB-03-4-B		
Mounting pos	sition		unrestricted		
MTTF _D value		[years]	150		
Weight		[kg]	1.1 (without subplate)		
Ambient temperature [°C]		[°C]	-20+60		
Fluid			Hydraulic oil according to DIN 51524		
Fluid tempera	ature	[°C]	-20+70 (NBR: -25+70)		
Viscosity,	permitted recommended	[cSt] / [mm²/s] [cSt] / [mm²/s]			
Filtering			ISO 4406 (1999); 18/16/13		
Min. pressure difference [bar]		[bar]	5 (GFG*1.6/3.2), 8.5 (GFG*6.3/12/18)		
Operating pressure [bar]		[bar]	A; B = 315 , P = 5 (GFG*, GFG*C), A, B, P = 160 (GFG*X)		
Effect of pressure on Q _{max} at p = 160 bar [%]		[%]	± 2 (GFG*1.6/3.2/6.3/12), ± 2.5 (GFG*18)		
			Flow control function Throttle function or free flow through check valve		


GFG UK.indd RH 19.07.2017

 $^{^{1)}\,\}mbox{Only}$ in combination with integrated check valve.


Performance curves

All characteristic curves measured with HLP46 at 50 °C.

Changes in pressure cause a change of pre-set flow rate. Flow rate deviations at Q_{max} : \pm 2 %

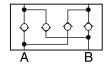
Bolt kits (Cylinder head ISO 4762-12.9 not included)

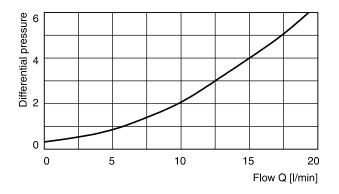
ı	Nominal size	Valve model	Quantity	Tightening	Valve without rectifier plate		Valve with rectifier plate	
	Valve	vaive illouei	Qualitity	torque [Nm]	Dimensions	Order No.	Dimensions	Order No.
	NG 06	GFG2	2	7.6 Nm	2x M5x60	BK380	2x M5x100	BK466

O-rings for sealing the connecting surface

Nominal size	Valve model	Ports	Dimensions Quar		Seal kits		
Valve	valve illouel	FULS	Ø-inner x cord thickness	Quantity	NBR	FPM	
NG 06	GFG2	A and B	9.25 x 1.78	3	SK-GFG2	SK-GFG2 FPM	

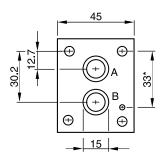
GFG UK.indd RH 19.07.2017

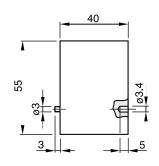


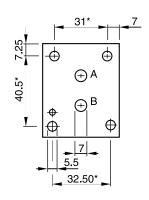

Sandwich rectifier plate

If a 2-way flow control valve is used in combination with a rectifier plate the valve can be used for meter-in and meter-out flow control of an actuator.

Design


The intermediate rectifier plate is designed with 4 identical, symmetrically arranged check valves. Thus the differential pressure is the same in both flow directions.





Measured with HLP46 at 50 °C.

Dimensions

Dimension tolerances

 $\begin{array}{ccc} * & & : \pm \ 0.1 \text{mm} \\ \text{others} & & : \pm \ 0.2 \ \text{mm} \end{array}$

holes and silhouette of valve body: untoleranced dimension

Ordering code: HR OA 06 C

O-ring for sealing the connecting surface

Connections	Dimensions	required units
A, B	12 x 1.5	2

Subplates 1)

Ordering code	
SPD 22 B 910	P, A, B and T = G1/4
SPD 23 B 910	P, A, B and T = G1/8

GFG UK.indd RH 19.07.2017

¹⁾ Details see chapter 12, series SPD.